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Abstract 

A characterization of crystallographic unit cells as 
vectors in a Euclidean six-dimensional space  ( E  6 in 
the usual mathematical notation; here termed G 6) is 
introduced, in which the non-triclinic Bravais lattice 
types form one-, two-, three- and four-dimensional 
linear subspaces. This formalism makes the determi- 
nation of the 'best' Bravais lattice (or lattices) for a 
particular experimentally determined cell a process 
of determining Euclidean distances in G 6 from the 
cell to its projections into the subspaces of the lattice 
types. The elements of vectors in the space are drawn 
from the Niggli matrix with the unsymmetrical ele- 
ments doubled. A cell is first reduced and all its nearly 
Buerger-reduced cells are used in the distance deter- 
minations. Thus the smallest distance provides infor- 
mation about both the propriety of the lattice type 
selection and the instability of the cell reduction. 

Introduction 

The formal setting in which a problem is 
specified often foretells the first method that 
will be used to solve that problem. 

(Blahut, 1985) 

Besides merely being a finite set of rules which 
gives a sequence of operations for solving a 
specific type of problem, an algorithm has five 
important features: ... Finiteness,... Definite- 
ness,... Input . . . .  Output, ... Effectiveness. 

(Knuth, 1973) 

The concept of the reduced cell in crystallography 
has a long history, and a number of papers concerning 
the uses ofreduced cells have been published in recent 
years. An important use is the assignment of the 
correct Bravais lattice of a crystal. The use of the 
reduced-cell formalism suffers from mathematical 
instabilities (Andrews, Bernstein & Pelletier, 1980); 
even the correct determination of the Bravais lattice 
is not ensured. The recent publication of several tech- 
niques which attempt to determine the correct Bravais 
lattice is an indication that the problem is not yet 
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solved [for example, Katayama (1986) states 'none 
of the programs is satisfactory enough to find the 
Bravais lattice automatically']. In this paper, we 
describe a modified formulation of unit-cell descrip- 
tion and reduction, and we describe its use in several 
applications, including determination of the Bravais 
lattice. 

New method 

The method we propose is built on five observations. 
The first concerns the work of Gruber (1973). Table 
2 of his paper lists the transformations which will 
generate all Buerger-reduced cells when the Niggli- 
reduced cell is known. The transformations generate 
alternate unit-cell choices for the lattice from which 
the Niggli cell was chosen. Any nearly reduced basis 
for which the base lengths differ by only small 
amounts from those of the Niggli basis will be found 
by use of these transformations and by the inter- 
change of nearly equal-length axes and sign inter- 
changes of near zeros. In this work, the metric tensor 
in the Euclidean space of six dimensions ( E  6 in the 
usual mathematical notation, here termed G 6 tO 
acknowledge the contributions of Gruber in this field) 
is assumed to be a unit tensor. 

If two of the reduced-cell base vectors or the base 
vectors of a nearly Buerger-reduced cell are nearly 
equal in length, then the search must include that 
basis and the bases generated by interchanging the 
two vectors of near-equal length. If all three base 
vectors are of similar length, then all six permutations 
of the three axes must be examined. The determina- 
tion of axes that are nearly equal should be based on 
the measured standard deviations. 

Thirdly, if one of the unsymmetrical scalars is 
nearly zero, then it is necessary to consider the possi- 
bility that its sign is incorrectly determined. In such 
cases, the rules about converting the reduced cells to 
standard presentation so that the angles are all acute 
or all obtuse must be relaxed for the near-zero scalar 
[conversion to standard presentation is termed 'nor- 
malization' by Gruber (1973) and by Kfiv~ & Gruber 
(1976)]. 

(~ 1988 International Union of Crystallography 
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The fourth observation concerns the mathematical 
form used to represent lattices and the operations for 
transforming from one unit cell of the lattice to 
another. The Niggli matrix is not a simple device for 
visualizing comparisons of lattices. Instead of treating 
the description of a lattice as a matrix, we will write 
it explicitly as a vector in the space G 6 (the six- 
dimensional space of real numbers). All the 
operations for transforming from centered to primi- 
tive representations, for cell reduction, and for 
searching for similar cells in a single lattice are linear 
operations in G 6 in this representation. This formula- 
tion leads to a simple natural metric for comparing 
lattices, for searching a database, for determining the 
best cell for each type of Bravais lattice, and for 
determining which Bravais lattice is probably best. 

The last observation is that  each of the 42 non- 
triclinic lattice types is a linear subspace in the space 
G 6. This linearity means that the point in each sub- 
space which is nearest to any experimentally deter- 
mined cell (a single point in G 6) can be found by 
simply generating a perpendicular line from the point 
which represents the reduced basis of the experi- 
mental cell to the linear form. 

Review of older methods 

The recent literature contains at least six computa- 
tional methods for determining the correct Bravais 
lattice of an experimentally determined unit cell. 

Roof (1969) and Mighell & Rodgers (1980) discuss 
comparison of the Niggli matrix of a reduced cell 
with the 44 standard forms. Zimmermann & Burzlaff 
(1985) describe an analogous method using the 24 
forms of the Delaunay reduction. These papers do 
not describe how such a comparison should be made 
or what the measure of correctness should be. As 
stated, these methods lack definiteness, and it is not 
clear that they are effective. An important problem 
is the lack of an appropriate metric for the necessary 
comparisons. 

Himes & Mighell (1987) proposed the use of B 
matrices to determine which symmetry axes are pres- 
ent in a lattice. No metric is described which would 
indicate how close the test lattice is to a lattice of a 
particular type. 'Distances' from a Bravais form are 
found by examining averaged 'tolerance matrices'. It 
is clear that the method is not applicable to other 
purposes for which unit-cell reduction is used (such 
as for comparing two cells or for searching a 
database). 

Ferraris & Ivaldi (1982) describe a procedure which 
attempts to determine the multiplicities of the lengths 
of the vectors in the lattice. For lattices which are 
close to the type which is sought, the method will 
work. However, there is no metric proposed, and such 
wording as 'might produce an apparent higher sym- 
metry' and 'careful inspection of the list of vectors' 

indicates that the method lacks definiteness. It is not 
hard to imagine cases where the multiplicity might 
be ambiguous. The method is probably not easily 
extended to other problems since vector spaces of 
infinite dimension do not have metrics. 

Clegg (1981) describes a method which searches 
in the list of vectors in the lattice for those special 
vectors which are symmetry axes. Again, no general 
method of choosing an appropriate tolerance for the 
search is given, and the method is not suitable for 
problems other than Bravais lattice determination. 

Andrews, Bernstein & Pelletier (1980) used a new 
description of lattices which is useful for problems 
other than Bravais lattice determination. They 
describe a least-squares technique for finding the 
'best' Bravais lattice of each type. The occurrence of 
false minima in searches for correct Bravais lattices 
and the presence of limit points for a = fl = ~  = 90 ° 
makes the method difficult to apply in some cases. 
These limit points cause the algorithm to be less 
sensitive to differences in angles than to edge lengths. 

Le Page (1982) describes a program which deter- 
mines the Bravais lattice by searching for possible 
twofold axes and by examining their spatial distribu- 
tion. The method seems only to be suited to Bravais 
lattice determination. 

Today, the term 'reduced cell' is often used as a 
synonym for the reduced cell defined by Niggli (1928). 
Niggli's definition is based on certain mathematical 
considerations of the properties of matrices; the rules 
for performing this reduction are described by 
Burzlaff, Zimmermann & de Wolff (1983), and by 
K~iv~ & Gruber (1976), and below in this work. 
Buerger (1957) attempted to give a more geometric 
definition. He defined the reduced cell as that which 
uses as base vectors the three shortest non-coplanar 
vectors of the lattice. Gruber (1973) has shown that 
there may be up to five Buerger-reduced cells which 
can be chosen from a single lattice. The relationships 
between such cells are not simply the alternate choice 
of the three shortest vectors and their inverses. 
Andrews, Bernstein & Pelletier (1980) addressed 
exactly this ambiguity. Much of the confusion about 
reduced cells and their use arises from this ambiguity, 
and it is the most important reason that the assignment 
of the correct Bravais lattice to an experimentally 
determined cell is a problem for which there was no 
previous general solution based on reduced cells. 

When more than one Buerger-reduced cell can be 
found in a lattice, the Niggli-reduced cell is one of 
the Buerger-reduced cells. If a lattice has only one 
cell that meets the Buerger reduction criterion, then 
it is the Niggli-reduced cell. The other commonly 
used reduced cell is that of Delaunay (1933). The 
Delaunay-reduced cell is based upon geometrical 
criteria about the distances of nearby lattice points 
from a central one. If the Nigglioreduced cell has all 
obtuse angles, then it is identical to the Delaunay- 
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reduced cell. If the Niggli-reduced cell has all acute 
angles, then two of the unit-cell edges are also edges 
of the Delaunay-reduced cell. Gruber (1978) has sug- 
gested that in those cases where more than one 
Buerger-reduced cell exists in a lattice that the one 
with the smallest surface area be chosen as 'the 
reduced cell'. On the other hand, Zimmermann & 
BurzlatI (1985) choose the Buerger-reduced cell with 
maximal surface area, and they state that this choice 
is consistent with the Niggli rules. Other criteria can 
be found to select any of the Buerger-reduced cells 
as the one to consider as 'the reduced cell'. It is 
important to choose algorithms which are not sensi- 
tive to particular choices of reduced cell in those cases 
where more than one choice exists (Andrews, Bern- 
stein & Pelletier, 1980). Further, it is important to 
allow for experimental error and to be able to deter- 
mine that two lattices are only slight distortions of 
each other. Neither of these problems has been fully 
discussed in the literature. 

Common implementations using the Niggli or 
Delaunay formalisms are sensitive to experimental 
error. The approach presented here avoids such a 
sensitivity by considering all the alternate approxi- 
mately reduced cells. 

Representation of a unit cell as a point in G 6 

In the study of reduced cells, a conventional rep- 
resentation of a lattice is a matrix of six elements in 
two rows (the Niggli matrix): 

( ~ . a  b . b  c . ~ ) = ( S , ,  $22 $33'~ 

c a . c  a \S,2 S13 S23J" 

The first row is often called the symmetrical scalars, 
and the second is called the unsymmetrical scalars. 
The operations for transforming between unit cells 
are conventionally represented as 3 x 3  matrices 
(really tensors) which operate on the base vectors of 
the lattice (represented as a vector of three vectors) 
and therefore only indirectly on the Niggli matrix. 
The problems with this formalism are that the 
operators do not operate directly on the Niggli matrix 
representation, that there is no concept of a metric 
for comparing two lattices, and that the Niggli matrix 
has no easily visualized meaning. In an alternate 
formulation, the operations are performed directly 
on the Niggli matrix entries; this representation also 
does little to aid in a physical understanding of the 
process. 

It is clear that six parameters are required to 
describe unit cells. The representation of lattices as 
vectors in a six-dimensional space leads to a system 
which is simpler to understand. In the space G 6 (the 

Euclidean space of six dimensions), the vectors are 

g=  

a • 

b.  

C. 

2b 

2a 
~.a 

]al 2 \ g l 

Ibl 2 ~ g2 
Icl ~ | = g3 

21bl Icl cos (,~)1 g, 
21al Icl cos (13) / g~ 
,21al Ibl cos ( r ) /  g6 

This representation follows Gruber (1973) by includ- 
ing the factor of two in the unsymmetrical scalars. If 
that factor is included, then the numerical range of 
the 'unsymmetrical '  scalars is the same as that of the 
'symmetrical '  ones. Inclusion of the principal 
diagonal of the first orthant within the region of space 
that contains valid unit cells means that permutations 
of the axes of reduced cells fill the first orthant instead 
of leaving an 'impossible' region surrounding that 
diagonal. In addition, there are fewer factors of two 
and of one-half in the transformations shown below. 

The above representation leads to a simpler system 
of operations and to simpler interpretation than does 
the conventional dual system of representations (cells 
and Niggli matrices). The operators are simple 6 x 6 
matrices which transform one vector in G 6 into 
another, rather than tensors which operate on vector 
triples which must then be transformed into the Niggli 
matrix or sets of operations on Niggli matrices whose 
geometrical meaning is not simple. The required 
operators are those for converting representations in 
centered lattices into the corresponding primitive 
ones, those for performing cell reduction, and those 
for searching for nearly reduced bases. 

In addition, linear operations give the representa- 
tion of best cell of each Bravais lattice type. The 
orientation of the base vectors is lost in the process 
of representing a lattice in G 6. As pointed out by 
Kfiv~ & Gruber (1976), more than one series of 
transformations may be found to convert from an 
arbitrary basis to a reduced basis. Because the path 
is not unique, the loss of orientation information is 
not important; the base vectors in 3-space can be 
determined later. Perhaps the most important advan- 
tage of representing lattices as points in a metric space 
rather than as matrices is that a distance measure is 
available. 

Operators for transforming from centered lattices to 
primitive lattices 

The transformation of a lattice from a centered rep- 
resentation to a primitive representation must precede 
cell reduction. The transformations in G 6 a r e  given 
in Table 1. As an example, one possible transforma- 
tion for a centered lattice is derived. 

Let the original body-centered cell be represented 
by base vectors in 3-space a,, b,, and c, and by the 



1012 LATI'ICES AND REDUCED CELLS AS POINTS IN 6-SPACE 

Table 1. Operations in G 6 for  converting representa- 
tions o f  centered lattices to the corresponding primitive 

lattice 

F o r  l a t t i ce  t y p e  R t he  t r a n s f o r m a t i o n  
w r i t t e n  as  h e x a g o n a l .  

g p  = 

1 0 0 0 

0 1 0 0 
I I I I 
,* ;~ 4 4 

I 0 0 

l 0 0 0 

0 0 0 0 

t l  0 0 0 0 1 0 0 

g"  = 0 1 0 

0 0 

0 0 

1 0 0 
1 4 ~ o 
0 0 1 

g P =  0 0 0 

0 0 0 

I 0 0 

! ! 
4 :, 0 
t I 
4 0 :, 

o ~ ' ,i 

g P =  0 0 t 

o ~ o 
o o 

1 0 0 

0 1 0 
I I 
4 0 4 

g P =  0 0 0 

I 0 0 

0 0 0 

i 4 9 
4 I 
0 0 

g P =  4 2 

_ ~  2 
9 

9 

is fo r  r h o m b o h e d r a l  l a t t i ces  

0 0  
I 
4 

0 g~ 

0 

°° t 
0 0 

0 0 
~- 0 0 gA 

0 0 I 

OOit 0 0 

0 1 

0 0 

I ~ 0 
I g F  

" i /  
4 4 

I 00;/ 
° ° ~  
I g o  
2 0 

o ~ 
0 0 

2 ~_ 4 
9 9 

~ - 9  

- - 9  
I I g R  

- o  0 

0 9 
3 I 6 9 0 

corresponding G 6 vector g~. One choice for the base 
vectors of the primitive lattice is ap = a~, bp = b~ and 
Cp = (a~ +b~ +c~)/2. Computing the vector g~ from 
these equations gives the equations 

a p  • a p  ~ a i . a 1 

b p . b ,  =b l  .bl  

Cp.Cp = (a~ .a~ +b~.  b~ +c~ .c~ 

+2al  .bl  +2al  .el +26i . e l ) / 4  

2bp.cp =b l  .bl  +(2ai  . bl +2br . c l ) /2  

2ap.Cp =a l  .a l  +(2a~ .bl +2ai  . c l ) /2  

2 a p .  b p  = 2a~. bl. 

Table 2. Operations in G 6 for  permuting axes o f  a cell 

ti oooo °tit ° ° O0 1 0 0 0 0 0 0 1 
0 1 0 0 0 0 1 0 

0 0 1 0 0 0 0 0 

0 0 0 1 0 0 0 0 

0 0 0 0 I 0 0 0 

000tt 100000it 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 1 0 0 

1 0 0 0 0 0 0 1 

0 0 1 0 0 0 1 0 

! 0 0 0 0 0 0 0 

ti 0o0 itti 01000)t001 o o it 0 0 , 0 o o  ° 1oOOOOO o , 0 0 0 0  ° 
0 0 0 0 1 0 0 0 0 1 0 0 0 0 

0 0 0 1 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 l 0 0 0 0 0 0 I 

0 0 1 0 0 0 0 l 0 0 0 0 l 0 

Expressed as a matrix/vector equation, these 
equations are the transformation from a body- 
centered to a primitive representation in G 6 given in 
Table 1. The inverse transformation may be used to 
go from a primitive representation to one that is 
body-centered. 

Cell  r e d u c t i o n -  part h conversion 
to standard presentation 

At each step during the cell reduction process, the 
current choice of base vectors is relabeled such that 
a .  a < b. b < c. c. This choice is arbitrary, and any of 
the permutations a . a < c . c < b ,  b, b . b < a . a < c . c ,  
b . b < c . c < a . a ,  c . c < a . a < b . b ,  c . c < b . b < a . a  
could be used. In G 6 these six permutations are 
related by the symmetry operations resembling m3 
in the space E 3. The operations relating the G 6 rep- 
resentations of the permutations are given in Table 2. 

Any one convention can be converted to another 
by applying an appropriate operation. In this sense, 
conversion to standard presentation is only the choice 
of the correct (arbitrarily chosen) asymmetric unit of 
the G 6 point group representing the unit cells. If 
lal =lbl or Ib[--Icl or lal--Ibl =lcl, then another 
arbitrary decision must be made: how to decide to 
which asymmetric unit a point should be assigned. A 
number of rules exist for deciding which permutation 
of the axes to choose in these cases. If the 
methodology is stable to perturbation, the choice does 
not need to be made (Andrews, Bernstein & Pelletier, 
1980; Le Page, 1982); any choice should yield a 
correct answer. If the methodology is not perturbation 
stable then the choice is crucial, and a further choice 
of degree of accuracy during cell reduction must be 
made (Mighell, 1976). How this choice is to be made 
has not been described in the literature. Although 
making this choice may aid in determining the correct 
Bravais lattice in some cases, it will invariably lead 
to cases where the assignment will be incorrect and 
to cases where two nearly identical unit cells have 
very different reduced cells. Database searching will 
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be misleading because matches between nearly iden- 
tical cells will fail. 

Cell  r e d u c t i o n - p a r t  II: reduction 

Cell reduction is the process of finding a unique g ' =  
primitive basis which has the shortest vectors subject 
to certain conditions. If at any step in cell reduction 
the cell is not reduced, then a new choice of a base 
vector is made. The new vector may be chosen as the 
shortest among the face and body diagonals of the 
current cell. Kfiv~ & Gruber (1976) have given a set 
of four operations for performing each step for which 
general or special conditions are not satisfied. Their 
algorithm, rewritten in G 6 (and modified so that the 
general conditions are always satisfied before the 
special conditions are tested) is described in the next g ' =  
section. 

Algorithm 

The algorithm is divided into two parts: conversion 
to standard presentation (steps SP1 through SP4) and 
reduction (steps R5 through R14). The term 'conver- 
sion to standard presentation' is introduced here as 
a replacement for the term 'normalization' used by 
Gruber (1973) and K~iv~ & Gruber (1976) in order 
to allow the unambiguous use of normalization in its 
conventional mathematical meaning (for vectors) of 
conversion to unit length. A function, sign, is defined 
such that 

sign (x) = + 1  if x >  0; 

sign (x) = - 1  if x < 0 .  

SP1. If (g~ > g2) or (g~ = g2 and Ig41>lgsI), then 
interchange the a and b axes. 

SP3. Else if g4gsg6 > 0, then set g4, gs, g6 positive. 

1 0 0 0 0 0 

0 1 0 0 0 0 

0 0 1 0 0 0 

0 0 0 sign(g4) 0 0 

0 0 0 0 sign(gs) 0 

0 0 0 0 0 sign(g6) 

g. 

SP4. Else (where g4gsg6<-O, always), then set g4, 
g5 and g6 negative. 

1 0 0 0 0 0 

0 1 0 0 0 0 

0 0 1 0 0 0 

0 0 0 - s i g n ( g 4 )  0 0 

0 0 0 0 - s ign  (gs) 0 

0 0 0 0 0 - s ign(g6)  

Endif (end of conversion to standard presentation). 

R5. If Ig4[ > g2, then 
s = sign (g4) 

g, = 

1 0 0 0 0 0 

0 1 0 0 0 0 

0 1 1 - s  0 0 

0 - 2 s  0 1 0 0 

0 0 0 0 1 - s  

0 0 0 0 0 1 

g .  

R6. Else if [gs[ > g~, then 
s = sign (gs) 

g, = 

0 1 0 0 0 01 

1 0 0 0 0 0 

0 0 1 0 0 0 

0 0 0 0 1 0 

0 0 0 1 0 0 

0 0 0 0 0 1 

g. g, = 

1 0 0 0 0 0 

0 1 0 0 0 0 

1 0 1 0 - s  0 

0 0 0 1 0 - s  

- 2 s  0 0 0 1 0 

0 0 0 0 0 1 

SP2. Else if (g2 > g3) or (g2 = g3 and Igsl> [g6[), 
then interchange the b and c axes. 

R7. Else if [g61 > gl, then 
s = sign (g6) 

g, = 

'1 0 0 0 0 

0 0 1 0 0 

0 1 0 0 0 

0 0 0 1 0 

0 0 0 0 0 

0 0 0 0 1 

O~ 

0 

0 
g. 

0 

1 

O, 

g, = 

1 0 0 0 0 0 

1 1 0 0 0 - s  

0 0 1 0 0 0 

0 0 0 1 - s  0 

0 0 0 0 1 0 

- 2 s  0 0 0 0 1 

g. 
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R8. Else if g~ + 

1 

0 

1 g '  = 
0 

2 

0 

g2 d- g4 -t- g5 + g6 < 0, then 

0 0 0 0 0 

1 0 0 0 0 

1 1 1 1 1 

2 0 1 0 1 g 

0 0 0 1 1 

1 0 0 0 0 

R9. Else if (g2 = g4 and 2g5 < gs) o r  (g2 = -g4 and 
g6 < 0 ) ,  then same operations as R5. 

RI0. Else if (gl = g5 and 2g4 < g6) o r  ( g l  = -g5 and 
g6 < 0), then same operations as R6. 

R11. Else if (gl = g6 and 2g4 < gs) or (gin = -g6 and 
g6 < 0), then same operations as R7. 

R12. Else if (gt+g2+g4+gs+g6=O and 2gt+  
2g5 + g6 > 0 ) ,  then same operations as R8. 

R13. Otherwise exit from looping, because the cell 
is Niggli reduced. 

R14. Go to step SP1. 

Searching for nearly reduced cells 

Gruber (1973) dealt with the problem of determining 
whether several cells which are Buerger reduced can 
be found in a lattice. When a lattice has several 
Buerger-reduced cells, there can be special problems 
(for instance, for cell comparison or database search- 
ing); these were solved by Andrews, Bernstein & 
Pelletier (1980) who used an algorithm which works 
but which has difficulties due to limit points (in the 
sense of conformal mapping) whenever an interaxial 
angle is near 90 °. Mighell & Himes (1986) describe 
the difficulties that these lattices cause in database 
searches, and they promise to publish a program to 
solve the problem. Andrews, Bernstein & Pelletier 
(1980) have published one solution using a seven- 
parameter representation (reduced cell lengths, 
reduced reciprocal-cell lengths and the cell volume). 
These lattices also cause problems in the determina- 
tion of the correct Bravais lattice. For example, face- 
centered cubic lattices have two Buerger-reduced 
cells. Only one of these is Niggli reduced. However, 
a small distortion of the lattice can cause the other 
Buerger-reduced cell to become the Niggli-reduced 
cell and the previously Niggli-reduced cell to become 
non-reduced [for examples, see Andrews, Bernstein 
& Pelletier (1980)]. Since the cells have quite different 
shapes, programs for Bravais lattice identification 
may fail to find the correct Bravais lattice in these 
cases. 

Gruber (1973) enumerated the 24 transformations 
of a lattice which must be searched in order to seek 
alternative Buerger-reduced cells. This is the same set 
of transformations which is used here to search for 
nearly Buerger-reduced cells. The original purpose 
was only to seek bases which have base vectors of 

the same lengths as those of the Niggli-reduced basis. 
Gruber (1973) limited the transformations to those 
that generate cells on the border of the region of 
reduced cells. Unlike the purpose of Gruber (1973), 
a perturbation-stable search may need cells which are 
not in adjacent asymmetric units. The 24 transforma- 
tions are applied recursively to any nearly Buerger- 
reduced cells that are found as well as to those of the 
Niggli-reduced cell until no new nearly Buerger- 
reduced cells are found. In addition, axes which are 
nearly equal in length must be interchanged (using 
the operators in Table 2). If near-zeros of the unsym- 
metrical scalars occur, then the all-acute all-obtuse 
rule must be relaxed. In a sense, this is like the 
B-matrix search of Himes & Mighell (1982), but only 
a finite number of iterations is required, because the 
starting point is a reduced cell. The transformation 
matrices in G 6 a r e  given in Table 3. 

Bravais lattice determination 

The 42 non-triclinic lattice types are listed in many 
places. The enumerations of Roof (1969) and of 
Burzlaff, Zimmermann & de Wolff (1983) are con- 
venient because they list the Niggli matrix restrictions 
for each lattice. If the Niggli matrix exactly matches 
one of the matrices for one of the 42 types, then the 
choice may be fairly simple. However, some allow- 
ance for errors in measurement must be made [dis- 
cussed by Andrews, Bernstein & Pelletier (1980)]. 
Problems arise from the determination of a single 
best choice; for instance, a cell may be exactly ortho- 
rhombic, but a sufficiently large error allowance will 
produce a tetragonal or cubic cell. Zimmermann & 
Burzlaff (1985) and Le Page (1982) have reported 
programs which produce multiple indications of poss- 
ible Bravais lattices. 

In G 6 the problem of Bravais lattice determination 
is simple. Each of the 42 non-triclinic lattice types is 
a linear subspace (hyperplane) which intersects the 
origin. The cubic cells are linear subspaces of order 
1 (lines), the tetragonal, hexagonal, and rhombo- 
hedral cells are order 2 (planes), the orthorhombic 
cells are order 3, and monoclinic cells are order 4 
(triclinic cells are order 6, that is they may occur 
anywhere in G 6 that represents a valid cell). The 
specifications of the subspaces of the 42 types are 
listed in Table 4. 

Example:  simple cubic, a = ae 

gP-cubic ~ a 2  
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Table 3. Operations in G 6 for searching for nearly 

! 0 0 0 

0 1 0 0 

1 0 1 0 

0 0 0 1 

0 0 0 

0 0 0 0 

1 0 0 0 

0 1 0 0 

0 1 1 - 1  

0 2 0 - 1  

0 0 0 0 

~0 0 0 0 (000 
Ol 0 1 0 

1 0 0 

0 0 - 1  

0 0 0 

0 0 0 ('000 
Ol 0 1 0 

1 1 ! 

0 2 I 

0 0 0 

0 0 0 (;000 
0 1 0 0 

1 1 - I  

- 2  0 1 

0 0 0 

0 0 0 (000 
1 0 I 0 

1 0 0 

0 0 I 

2 0 0 

0 0 1 (000 
1 I 0 0 

1 1 1 

2 0 1 

2 0 1 

2 0 0 (00 0 
i I 0 0 

0 1 0 

0 0 i 

0 - 2  0 

0 0 - 1  

Buerger-reduced cells o)(oo 0 1 

0 1 0 0 0 

1 0 1 0 1 

0 1 0 0 0 

1 0 2 0 0 

0 1 0 0 0 

0i)(000 0 0 0 I 0 

0 1 1 1 

0 0 2 0 

- 1  2 0 0 

0 0 0 0 00 )(l 00 
0 0 0 0 I 

0 - 1  0 1 1 

I 0 0 0 2 

0 - 1  0 0 0 

! 0 0 0 0 

oi/q oo 0 0 1 I 0 

1 0 1 1 

I 0 2 0 

1 I o / O 0 0  
1 2 0 0 00)('0 O0 
0 - 1  I 0 1 

0 I 1 1 

- i  2 0 2 

- I  2 0 0 

0 -  2 0 0 o)(1 0 0 0 

0 0 0 0 1 

0 1 1 1 0 

1 0 0 0 0 

0 1 0 - 2  0 

0 0 0 0 0 0)( 0 0 0 l 

0 1 I 1 0 

1 0 1 1 I 

1 2 2 0 0 

0 1 0 0 0 

0 1 0 - 2  0 o)( 0 0 0 1 

0 1 0 -1  I 

- 1  0 0 1 1 

- I  - 1  0 - 2  0 

1 0 0 0 - 2  

1 0 0 0 0 

00000)( 00001 
0 0 0 0 0 

0 0 1 1 1 0 - 1  0 

- 1  0 0 1 0 2 0 1 

0 - 1  0 0 0 0 0 1 

0 0 1 0 0 0 0 0 i) 
O0 0t(' 0 0 0 0 i/ 0 0 0 0 0 1 0 0 0 

1 1 1 I 1 0 0 0 

1 0 I 0 0 0 1 I 

0 ! I 2 0 0 0 0 

0 0 1 0 0 0 0 1 oo) 
° °  ° 
0 

0 

- 1  

1 oo) 
1 

I 

I 

0 

-~ o ° 
0 

- 1  

- 1  

- 1  (0' O00i) o o , o o ;  
0 1 0 - 1  

0 - 2  0 I 

0 0 -1  0 

0 0 1 0 

000 i) 0 1 0 1 0 - 1  0 

0 1 I - I  0 

0 0 2 - 1  -1  

0 2 0 - 1  0 

0 0 0 - 1  0 1(00 000) 1 0 1 0 I 0 

I 1 1 1 1 

2 0 2 1 2 

0 0 2 1 1 

0 0 2 0 1 

oo o)(I ooo 
0 0 0 1 0 0 0 

1 0 0 0 1 ! - I  

1 0 0 0 0 - 2  I 

0 1 I 0 0 0 0 

0 ! 0 0 0 0 0 oo)( 0 1 0 0 0 

0 0 I 0 0 I 1 

1 0 0 1 1 1 1 

1 I I 2 2 0 I 

0 I I 2 0 0 0 

0 0 1 2 0 0 0 000)(i 000 o , o ; o , o  
1 I I I - 1  

1 2 0 2 - 1  

0 1 0 0 0 

0 I 0 0 0 

0 0 0 ~ 

0 0 0 

0 0 - 1  

- 1  1 0 

0 0 1 

1 0 0 

0 0 0 

0 0 - 1  

0 - 1  0 

1 - 1  - 1  

- I  0 1 

0 0 i 

0 0 0 

0 0 - 1  

- 1  0 0 

1 - 1  1 

1 0 0 

- 1  1 0 

Example: face-centered cubic, a = a F 

g F - c u b i c  = a ~  

1 

1 

1 

1 

1 

1 

Example: primitive orthorhombic, a = ao, b = bo, c = Co 

a~ 
b~o 
C~o 

g P - o r t h o  = 0 

0 

0 

The simple cubic cells all occur on the line g~ = s, 
g 2  = S, g 3  = S, g 4 = 0 ,  g s = 0 ,  g 6 = 0 ,  w h e r e  s i s  a n  

arbitrary parameter.  The primitive tetragonal cells (c 
unique) all occur on the plane g~ = s, g2 = s, g3 = t, 
g 4 = 0 ,  g s = 0 ,  g 6 = 0 ,  where s and t are arbitrary 
parameters.  

For a given cell, the perpendicular  projection of 
the G 6 point  which represents the reduced basis or 
the projection of one of the nearly Buerger-reduced 
bases onto each of the 42 hyperplanes  gives 42 'best '  
cells of  the lattice types. These are 'best '  cells in the 
least-squares sense in G 6. The distance of the deter- 
mined point from each hyperplane  is the measure of 
how good the fit of  that lattice type is for the cell 
being examined.  Propagation of the errors of  the 
original cell constants can produce a measure in stan- 
dard deviations of the fit. In keeping with actual 
measurement ,  there is never a single best lattice type; 
the agreement  of  each lattice type is s imply deter- 
mined• 

Example 
What is the best s imple cubic cell for the primitive 

or thorhombic  cell a = 4.9, b = 5.0, c = 5.1 ~ ? 
In G 6 the base vector of  the simple cubic cells is 

1 

1 

1 
b =  (x/3/3) 

0 l "  

0 

0 

For the or thorhombic  cell, 

24.01 

25.00 

26.01 
g o =  0 " 

0 

0 

The projection of g onto b is the dot product  of  g 
and b times b. 
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Dot product= (#3/3)x75.02.  

75.02 

75.02 

gbest.cubic = (1/3) 75~02 

0 

0 

gbest-cubic  - -  go = 

25.00671 

25.0067 

25.0067 
= 

0 

0 

0 

0.9967 

0.01 

1.0033 

0 

0 

0 

Error = [0.99672 + ( -  1.0033) 2 + 0.012] 1/2 ~--- 1.41426 

Igbes,-¢ubicl---- (x/3)a2 = 43"3 ± 1"414 

a = 5"002 + 0"082. 

To produce a set of base vectors in G 6 for any of 
the 42 lattice types, it is only necessary to produce 
four random vectors in G 6 which meet the require- 
ments of the lattice type. The four vectors are then 
converted to a basis set by Gram-Schmidt ortho- 
normalization [Chow (1983) or standard books on 
linear algebra]. If the lattice type is of order less than 
four, then the Gram-Schmidt process will find only 
the appropriate number of non-zero base vectors. The 
conditions (except for normalization to unit length) 
that the base vectors must obey are listed in Table 4. 

In order to determine possible Bravais lattices, the 
reduced cell and all the nearly Buerger-reduced cells 
of a lattice must be determined. Then the G 6 
representations of each of those cells are projected 
onto the linear subspace of each Bravais lattice type 
to find which is the closest to the hyperplane of that 
lattice type. The distance of the closest cell to each 
linear subspace is the measure of goodness of fit for 
that type of lattice. 

Table 4. The linear subspaces in G 6 describing each of  
the 42 nontriclinic Bravais lattice types 

T h e  c o l u m n  h e a d i n g s  r e fe r  to  t he  d e s i g n a t i o n s  o f  R o o f  (1969)  a n d  
o f  Burz laf f ,  Z i m m e r m a n n  & de  Wol f f  (1983) .  T h e  s y m b o l s  r, s, t 
a n d  u m a y  be  c h o s e n  to  h a v e  a r b i t r a r y  va lues .  A n y  r a n d o m  s e l e c t i o n  
o f  va lue s  will  be  i n c l u d e d  in t he  a p p r o p r i a t e  l i nea r  s u b s p a c e ,  b u t  
it m a y  n o t  be  a p h y s i c a l l y  m e a n i n g f u l  un i t  cell. F o r  i n s t a n c e ,  no  
ac tua l  un i t  cel l  will  h a v e  a n e g a t i v e  un i t -ce l l  e d g e  l e n g t h  o r  an  
a n g l e  wi th  a c o s i n e  l a rge r  t h a n  1.00.  T o  m a k e  a set  o f  bas i s  v e c t o r s ,  
t he  v e c t o r s  n e e d  to  be  n o r m a l i z e d  to  un i t  l e n g t h  in G 6. 

La t t i ce  R o o f ' s  I n t e r n a t i o n a l  
t y p e  labe l  Tab les  L i n e a r  s u b s p a c e  

cP 44A 3 (r ,r ,r ,  0, 0, 0) 
cl  44B 5 (r, r, r, - 2 r / 3 ,  - 2 r / 3 ,  - 2 r / 3 )  
cF 44C 1 (r ,r ,r ,  r , r , r )  
tP 45A 11 (r, r, s, 0 ,0 ,0 )  

45B 21 (r , s , s ,  0,0, 0) 
t l  45C 15 (r, r, s, - r ,  - r ,  0) 

45D 6 (r, r, r, - r  - s, - r  - s, 2s) 
45D 7 (r ,r ,r ,  2 s , - r - s , - r - s )  
45E 18 (r, s, s, r/2, r, r) 

hP 48A 12 (r, r, s, 0,0,  - r )  
48B 22 (r, s, s, - s ,  0, 0) 

hR 49B 9 (r, r, s, r, r, r) 
49C 2 (r ,r ,r ,  s , s , s )  
49D 4 (r ,r ,r ,  s , s , s )  
49E 24 (r, s, s, - s  + ( r /3) ,  - r, - r )  

oP 50C 32 (r, s, t, 0, 0, 0) 
oS 50A 36 (r,s, t, O, - r ,  0) 

50B 38 (r, s, t, 0, 0, - r )  
50D 13 (r, r, s, 0, 0, t) 
50E 23 (r , s , s ,  t, 0, 0) 
50F  40 (r, s, t, - s ,  0,0)  

oF 51A 16 (r, r, s, t, t, - 2 r - 2 t )  
51B 26 (r, s, t, r /2,  r, r) 

ol 52A 8 (r, r, r, s, t, - 2 r - s - t )  
52B 19 (r, s, s, t, r, r) 
52C 42 (r, s, t, - s ,  - r ,  0) 

m P  53A 33 (r, s, t, 0, u, 0) 
53B 35 (r , s , t ,  u, 0, 0) 
53C 34 (r , s , t ,  0,0, u) 

m S  54A 39 (r, s, t, u, 0, - r )  
54B 41 (r, s, t, - s ,  u, 0) 
54C 37 (r, s, t, u, - r ,  0) 
55A 10 (r, r, s, t, t, u) 
55A 14 (r, r, s, t, t, u) 
55B 20 (r, s, s, t, u, u) 
55B 25 (r, s, s, t, u, u) 
56A 28 (r, s, t, u, r, 2u) 
56B 30 (r, s, t, s, u, 2u) 
56C 29 (r, s, t, u, 2u, r) 
57A 43 (r, s, t, - s  - u, - r -  u, 2u) 
57B 17 (r ,r ,s ,  t , u , - 2 r - t - u )  
57C 27 (r , s , t ,  u , r , r )  

Comparison of two lattices 

The first step in comparing two experimental lattice 
(unit-cell) determinations in order to see if they are 
different is to reduce the cells. If the reduced cells 
are the same, then the process is finished. In G 6, the 
cells are the same if the distance between them is 
small (perhaps in the sense of a small number of 
standard deviations). If the cells differ, but g~, g2 and 
g3 are similar in magnitude, then there may be a 
nearly Buerger-reduced cell of one cell that nearly 
matches the reduced cell of the other. One of the two 
original cells is chosen, and its nearly Buerger- 
reduced cells (if any) are compared with the other 
cell to see if any near match exists. 

Searching a database of unit-cell parameters 

There are two ways to organize a search within a 
database of known unit cells. Either the database 
keyset may be kept small, with a corresponding 
increase in search time, or the database may be 
enlarged with an increase in the time to set it up 
initially. 

I. Increased search time with a smaller database 

The reduced cells are computed for all the entries 
in the database. The six parameters of the cell in G 6 
are used as the keys. When the database is to be 
searched for an unknown, the Niggli-reduced cell of 
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the unknown is computed, and so are all the nearly 
Buerger-reduced cells. The G 6 representation of each 
of these cells is used to search in the database with 
some specified tolerance. Any database entry within 
some user-specified distance in G 6 is reported as a 
match. 

II. Decreased search time with a larger database 

The reduced cells and all of the nearly Buerger- 
reduced cells of each of the experimental cells are 
computed for all entries in the database. All these G 6 

vectors are loaded into the database. The reduced 
cell and the nearly Buerger-reduced cells for any entry 
should all point to a single item; in this way, only 
the key size is increased. When an unknown is sought 
in the database, only the representation of its Niggli- 
reduced cell is needed for the search. The tolerance 
specifications are as before except that a tolerance 
limit is also needed for deciding whether to include 
any particular nearly Buerger-reduced cell. 

We are pleased to thank G. H. Stout, V. Schomaker, 
E. C. Lingafelter, R. E. Stenkamp and B. D. Santar- 
siero who each read the manuscript and who posed 
helpful questions. R. A. Jacobson kindly supplied a 
copy of Lawton & Jacobson (1965). LCA especially 
wishes to thank R. E. Stenkamp for support during 
the time when some of the work was completed and 
when the manuscript was written. All computations 
were performed on an 8-bit 64kbyte memory Kaypro- 
II computer. 

A P P E N D I X  

A referee has requested a more complete description 
of the calculations relating to the hyperplanes rep- 
resenting the lattice types (the generation of the base 
vector set for a lattice type and the determination of 
the distance from a hyperplane). Although slightly 
tedious, the computations for any given case can be 
performed by hand, and they are easily done on some 
hand calculators. The entire computation except for 
reduction and orthonormalization is shown for one 
case. For hand calculations, the orthonormalization 
and the subsequent arithmetic can be greatly sim- 
plified in most cases by choosing the random numbers 
to be O's and l's (being sure to get a linearly indepen- 
dent set of starting vectors). 

Generat ion  o f  a set o f  base vectors 

For this particular example, the base vectors will be 
computed for the rhombohedral cells with a greater 
than 109.49 ° (International Tables designation 24). 
The generic form for the base vectors (from Table 4) 
is 

( r, s, s, - s  + ( r/  3 ), - 2 r /  3, - 2 r /  3 ). 

Two base vectors will be needed because there are 
two variables. For each of the base vectors, we gener- 
ate two random numbers; one we call r and the other 
s. Computation of the other G 6 components to make 
vectors of the generic form gives 

0"17 

-0"25 

-0"25 

0"30 

-0"11 

-0"11 

0"31 

-0"62 

-0"62 

0"73 

-0"21 

-0"21 

Performing a Gram-Schmidt orthonormalization 
[Chow (1983) or any standard book on linear algebra] 
on the above set produces the following pair of 
orthonormal (that is, unit-length and with null dot 
product) base vectors: 

0.32277 

-0.47908 

-0.47908 

0.58667 

-0.21518 

-0.21518 

-0.63660 

-0.33182 

-0"33182 

0.11962 

0.42440 

0"42440 

Any linear combination of these vectors is also an 
acceptable set of base vectors. To generate a G 6 basis 
set orthogonal to this pair, choose four random six- 
element vectors and (without modifying them to fit 
the current case) continue the Gram-Schmidt pro- 
cess, starting with the above two vectors. 

D e t e r m i n a t i o n  o f  a 'best cel l '  

Start with the primitive cell a = b = c = 10 ~ and a = 
112, fl = 112.5 and y = 112.9 °. The corresponding G 6 

vector is (100, 100, 100, -74.9, -76 .5 , -77 .8 )  where 
each element has the units of ]k 2. The reduced cell is 
a=8.41 ,  b=10,  c--10]k,  a=112 ,  /3=106.3, y =  
106"8 °. The reduced G 6 vector is (70.7, 100, 
100 , -74 .9 , -47-3 , -48 .5) .  Next the dot products of 
the reduced vector with ~he two base vectors are 
computed; they are -96.3 and -161.0 respectively. 
Multiplying the base vectors by their respective dot 
products gives the projections of the reduced vector 
onto the base vectors. Adding the two projections 
gives the best least-squares fit (in the space G 6) to 
case 24. 

71.39 -31.09 102.48 

99.57 46.15 53.42 

99.57 46.15 + 53.42 

-75.77 -56.51 -19.26 

-47.60 20.73 -68.32 

-47.60 20.73 -68.32 
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Note that the determined best fit is independent  of  
the par t icular  pair  of  base vectors. The resulting vector 
meets the requirements  of  case 24. The result vector 
is converted to the reduced cell (8.45, 9.98, 9.98, 
112.4, 106-4, 106-4) which is the best least-squares fit 
of  the original cell to case 24. The corresponding 
unreduced rhombohedra l  cell has a =9.98A, a = 
112-4 °. 

The error  of  the fit can be computed in two ways: 
either the reduced vector can be projected onto a set 
of  G 6 base vectors normal  to the base vectors of  the 
part icular  case (the length of  the sum of  the projec- 
tions being the error),  or the length of  the difference 
between the best-fit vector and the G 6 vector before 
projection can be computed.  The latter difference is 

- 0 . 6 9  70.70 71.39 

0.43 100.00 99.57 

0.43 100.00 99.57 

0.87 - 7 4 . 9 0  -75 .77  

0-30 - 4 7 . 3 0  - 4 7 . 6 0  

- 0 . 9 0  - 4 8 . 5 0  - 4 7 . 6 0  

with a length of  1-6 A (from the reduced vector to 
the best fit in case 24). In practice, this length should 
be compared  with the error  computed from the deter- 
minat ion of  the unit-cell parameters .  For small 
molecules, diffractometers normally produce error 
vectors with lengths in the range 0.05 to 0.4 A 2. On 
the basis of  this rule of  thumb,  the proposal  that  the 
original cell is rhombohedra l  should probably  be 
rejected in the absence of  other  evidence. Certainly 
the differences in the original angles are outside the 
usual error bounds  for diffractometers.  
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Abstract  

In direct methods  difficulties can be experienced in 
solving structures in si tuations where da ta  of  high 
resolution are being used very early in the phasing 
process; in real space, this tends to build too much 
atomic detail before the molecular  outline is fully 

defined by the lower-angle reflections, as well as 
involving E magni tudes  which have high s tandard  
deviations. The problem can be exacerbated in situ- 
ations where the da ta  extend beyond the Cu sphere - 
often collected using high-intensity X-ray tubes. Prob- 
lems can also be encountered with very low-angle 
data  because of  solvent effects and data  measurement  
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